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Abstract—Epoxidation of various alkenes in low to high yields (29–100%) and good to excellent selectivities (75–100%) was
performed with tetrabutylammonium monopersulfate in the presence of meso-tetrakis(pentafluorophenyl)porphyrin as catalyst
and tetrabutylammonium acetate or fluoride or imidazole as co-catalysts in CH2Cl2, in less than 10 min at room temperature
(�25 �C).
� 2006 Elsevier Ltd. All rights reserved.
Biomimetic epoxidation of alkenes has been achieved
using various synthetic manganese(III) porphyrins in
association with oxidants, such as PhIO,1 NaOCl,2

H2O2,3 periodate,4 and n-Bu4NHSO5.5 It was found that
the rates and selectivities of these reactions are critically
dependent upon the use of nitrogen donor co-cata-
lysts.3a,6 Also, it has been demonstrated that, instead
of nitrogen donors, ammonium acetate can be employed
as an effective co-catalyst.7 Contrary to the oxidative
degradation of the nitrogen donors,8 salt co-catalysts
are quite stable under these oxidizing conditions.9

In this work we describe for the first time the epoxida-
tion of alkenes in low to high yields and good to
excellent selectivities, in very short times using
n-Bu4NHSO5

10 in the presence of MnTPFPP(OAc)11

catalyst in association with either n-Bu4NOAc12 and
n-Bu4NF or imidazole co-catalysts, Tables 1 and 2.
The results obtained clearly show how the relative reac-
tivities of the aryl alkenes versus cyclooctene, cyclo-
hexene, and 1-octene differ substantially in accord with
the nature of the co-catalysts, under similar conditions,
Table 2.
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The general procedure for oxidation consisted of adding
n-Bu4NHSO5 (0.19 mmol) to a CH2Cl2 (0.5 mL) solu-
tion containing the alkene (0.1 mmol), MnTPFPP(OAc)
(0.001 mmol) and tetrabutylammonium salts12 or imid-
azole (ImH) as co-catalysts (0.04 or 0.02 mmol). The
solutions were stirred at a constant speed, under air, at
room temperature. The consumption of the starting
alkene and formation of epoxide were monitored by
GLC and 1H NMR.

The results of epoxidations of a series of alkenes in the
presence of MnTPFPP(OAc) as catalyst and two differ-
ent salt co-catalysts, n-Bu4NOAc and n-Bu4NF, are
given in Table 1. Considering the reaction times, n-Bu4-
NOAc is clearly a more effective co-catalyst than
n-Bu4NF (entries 1–10). However, the selectivities were
very similar.

To compare both the relative reactivities of alkenes and
also the co-catalytic properties of n-Bu4NOAc with
ImH, we carried out similar epoxidation reactions with
the same catalyst–co-catalyst–substrate–oxidant ratios
(1:20:100:190), in CH2Cl2, for 1 min, Table 2. It was ob-
served that the relative reactivities of alkenes were quite
different for n-Bu4NOAc and ImH co-catalysts, except
for trans-b-methylstyrene. It was shown that the selec-
tivities of epoxidation of alkenes were very similar
except for a-methylstyrene and 3-Cl-styrene (entries 2
and 5), for which ImH was a more selective co-catalyst.
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Table 1. Epoxidation of alkenes with n-Bu4NHSO5 catalyzed by MnTPFPP(OAc) in the presence of n-Bu4NOAc or n-Bu4NF in CH2Cl2
a

Entry Alkene Conversionb (%) Epoxide Epoxide yieldb (%) Selectivityb (%) Time (min)

1 98 (91)c

O

76 (72)c 78 (79)c 1 (2)c

2 90 (98)c
O

78 (86)c [70]e 87 (88)c 1 (7)c

3 98 (79)c

O

98 (79)c [83]e 100 (100)c 8 (10)c

4
Cl

98 (97)c

O

Cl

96 (88)c [89]e 98 (91)c 1 (3)c

5

Cl

96 (98)c

O

Cl

88 (85)c [80]e 92 (87)c 1 (5)c

6 98 (96c)

O

92 (92)c,d 94 (96)c 1 (5c)

O
6 (4)c,d 6 (4)c

7 73 (50)c
O

73 (50)c,d 100 (100)c 10 (10)c

8 95 (97)c

O

93 (95)c 98 (98)c 2 (8)c

9 93 (90)c

O

91 (88)c [80]e 98 (98)c 5 (10)c

10 79 (29)c O
77 (28)c 97 (97)c 10 (10)c

a Reactions were run at least in triplicate under air at 25 ± 2 �C, and the reported values are the average of the measured values. The molar ratio for
catalyst–co-catalyst–substrate–oxidant is 1:40:100:190.

b The GC conversions (%) to the products and the epoxide yields (%) were measured relative to the starting alkenes. The conversion % is defined as
[(the number of moles of the starting alkene converted to the product(s))/(the number of moles of the starting alkene)] · 100; epoxide yield % is
equal to [(the number of moles of the epoxide obtained)/(the number of moles of the starting alkene)] · 100. The epoxide selectivity % is [(the
number of moles of the epoxide formed)/(the number of moles of the starting alkene converted to the product(s))] · 100.

c The data outside the parentheses are for n-Bu4NOAc and those in the parentheses correspond to n-Bu4NF.
d The organic product(s) and the unreacted alkenes were separated by silica gel chromatography and the isomer ratios were determined by 1H NMR

spectroscopy.
e The isolated pure epoxides were obtained in the presence of n-Bu4NOAc.13
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Also, the epoxidation of cis-stilbene proceeded with a
lower stereospecificity in the presence of n-Bu4NOAc
(93%) than ImH (100%). Alkenes with potential p-donor
aryl substituents (entries 1–7), were generally much
more reactive (conversion %, 27–98) than cyclohexene,
cyclooctene, and 1-octene (conversion %, 17–52) (entries
8–10), in the presence of n-Bu4NOAc. Whereas this
order was virtually reversed when ImH co-catalyst
was used, and the relatively less hindered cyclohexene,
cyclooctene, and 1-octene displayed greater or similar
reactivities (conversion %, 49–62) as compared to the
aryl alkenes (conversion %, 38–56). The less hindered
monosubstituted styrene and 4-Cl-styrene were distin-
ctly more reactive than disubstituted styrenes (entries
2, 3, 6, and 7), and 3-Cl-styrene, using n-Bu4NOAc,
Table 2.

The differing results obtained using n-Bu4NOAc versus
ImH clearly indicate that the active oxidizing species
for these co-catalysts may be very different. Addition



Table 3. Epoxidation of a-methylstyrene with n-Bu4NHSO5 catalyzed
by MnTPFPP(OAc) in the presence of various tetrabutylammonium
salts in CH2Cl2

a

Salt Conversionb

(%)
Epoxide yieldb

(%)
Selectivity
(%)

Time
(min)

n-Bu4NOAc 88 74 84 1
n-Bu4NF 67 58 86 10
n-Bu4NCl 62 42 68 10
n-Bu4NBr 79 28 35 10
n-Bu4NN3 61 41 67 10
n-Bu4NOCN 58 33 57 10
n-Bu4NSCN 31 28 90 10
(n-Bu4N)2SO4 64 44 69 10
n-Bu4NHSO4 9 5 55 10
n-Bu4NNO3 3 1 33 10
None — — — 10

a Reactions were run at least in triplicate under air at 25 ± 2 �C, and
the reported data represent the average values. The molar ratio for
catalyst–co-catalyst–substrate–oxidant is 1:20:100:190.

b The GC conversions (%) and epoxide yields (%) were measured rel-
ative to the starting alkene.

Table 2. Epoxidation of alkenes with n-Bu4NHSO5 catalyzed by MnTPFPP(OAc) in the presence of n-Bu4NOAc or ImH in CH2Cl2
a

Entry Alkene Conversionb (%) Epoxide yield b (%) Selectivity (%)

1 Styrene 98 (41)c 76 (33)c 78 (80)c

2 a-Methylstyrene 88 (56)c 75 (56)c 85 (100)c

3 trans-b-Methylstyrene 52 (50)c 51 (50)c trans 98 (100)c

4 4-Cl-Styrene 95 (46)c 92 (44)c 97 (96)c

5 3-Cl-Styrene 83 (38)c 77 (37)c 93 (97)c

6 cis-Stilbene 89 (40c) 83 (40)c,d cis 93 (100)c

6 (trace)c,d trans 7
7 trans-Stilbene 27 (18)c 27 (18)c,d trans 100 (100)c

8 Cyclooctene 52 (62)c 50 (62)c 96 (100)c

9 Cyclohexene 20 (52)c 19 (52)c 95 (100)c

10 1-Octene 17 (49)c 17 (48)c 98 (98)c

a All the reaction conditions were the same as those described in Table 1 except for a different catalyst–co-catalyst ratio (1:20), and the reaction time
(1 min).

b The GC conversions (%) or epoxide yields (%) were measured relative to the starting alkenes.
c The data outside of the parentheses refer to n-Bu4NOAc co-catalyst and those inside the parentheses relate to ImH.
d The organic product(s) and the unreacted alkenes were separated by silica gel chromatography and the isomer ratios were determined by 1H NMR

spectroscopy.
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of ImH (2.4 · 10�4 mmol) and then n-Bu4NHSO5

(2.3 · 10�3 mmol) to a solution of MnTPFPP(OAc)
(1.2 · 10�5 mmol) in CH2Cl2 (2 mL) (Soret, kmax =
474 nm) had virtually no effect on the Soret band posi-
tion. In contrast, addition of n-Bu4NOAc (2.4 · 10�4

mmol) to a CH2Cl2 solution of MnTPFPP(OAc)
(1.2 · 10�5 mmol) very rapidly (<15 s) produced a new
intense Soret band (kmax = 466 nm), presumably due
to the formation of a six-coordinate [MnTPFPP-
(OAc)2]-species. By adding n-Bu4NHSO5 (2.3 · 10�3

mmol) to this solution, the Soret band at kmax = 466 nm
gradually disappeared (500 s), and concomitantly a Sor-
et band at kmax = 418 nm, probably corresponding to an
Mn-oxo species,14 increased to a maximum. Addition of
a large excess of alkene again gave the original Soret
band (kmax = 466 nm). Accordingly, it seems plausible
to conclude that for n-Bu4NOAc co-catalyst, an
MnTPFPP(OAc)(O) species is the primary active oxi-
dant, whereas in the case of ImH the functional oxidant
is predominantly the six-coordinate MnTPFPP(ImH)-
(HSO5) complex. Consideration of the steric properties
of the alkenes (see above) suggests that steric hindrance
operating at the oxygenation site of MnTPFPP-
(OAc)(O) must be greater than that of MnTPFPP(ImH)-
(HSO5). It seems that the strong withdrawal of the
Mn-oxo group, with its short bond length, into the
cavity of the meso-tetrakis(pentafluorophenyl) groups
of the porphyrin, by the trans OAc� axial ligand, might
be the main cause of the observed larger steric hindrance
of the former than the latter.14

Examination of the co-catalytic properties of a variety
of n-tetrabutylammonium salts,12 in the epoxidation of
a-methylstyrene demonstrates that the acetate and fluo-
ride salts are the best co-catalysts, considering a combi-
nation of both conversion % and selectivity %, Table 3.
However, n-Bu4NSCN appears to be an excellent co-cat-
alyst, in terms of selectivity of the epoxidation.

Comparison of catalytic activities of four different
MnPor(OAc) species, for epoxidation of styrene in the
presence of both n-Bu4NOAc and n-Bu4NF co-catalysts,
under similar conditions, shows that MnTPFPP(OAc) is
the best catalyst among this series, Table 4. The lower
catalytic properties of MnTMP(OAc)11 and MnTD-
CPP(OAc)11 in comparison to MnTPFPP(OAc) can be
related to their larger steric hindrance. Whereas, the
lower catalytic activity of MnTPP(OAc)11 than MnTP-
FPP(OAc) reflects the lower stability of the former than
the latter toward oxidative degradation. This contrasts
the behavior of MnTPP(OAc) as an oxidation catalyst
in the presence of ImH co-catalyst.5d It should be noted
that with molar ratios of 20000:1:2500:36000 for
styrene–MnTPFPP(OAc)–n-Bu4NOAc–n-Bu4NHSO5 a
total turnover number of 13,000 was achieved for epox-
idation of styrene, in CH2Cl2, in 72 h, at room
temperature.

In conclusion, this work shows that epoxidation of alk-
enes in low to high yields and good to excellent selectiv-
ities can be performed with n-Bu4NHSO5 in the presence
of MnTPFPP(OAc) catalyst in association with n-Bu4-
NOAc, n-Bu4NF, or ImH co-catalysts, in CH2Cl2, at



Table 4. Catalytic activities of various MnPor(OAc) species for
epoxidation of styrene in the presence of n-Bu4NOAc and n-Bu4NF
saltsa

Salts MnPor(OAc)

TPP TMP TDCPP TPFPP

n-Bu4NOAc 19 5 10 98b

n-Bu4NF 14 2 2 91c

a The molar ratios for catalyst–co-catalyst–substrate–oxidant and the
general reaction conditions are the same as those for Table 1, with
10 min reaction times.

b 1 min reaction time.
c 2 min reaction time.
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room temperature. The very high stability of n-tetra-
butylammonium salt co-catalysts and moderate stability
of MnTPFPP(OAc) catalyst toward oxidative degrada-
tion would seem to make these catalytic systems very
suitable for achieving high turnover numbers for epoxi-
dation of alkenes.
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