

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 47 (2006) 7007-7010

Rapid and highly selective epoxidation of alkenes by tetrabutylammonium monopersulfate in the presence of manganese *meso*-tetrakis(pentafluorophenyl)porphyrin and tetrabutylammonium salts or imidazole co-catalysts

Daryoush Mohajer* and Zahra Solati

Department of Chemistry, Shiraz University, Shiraz 71454, Iran Received 26 April 2006; revised 26 June 2006; accepted 25 July 2006

Abstract—Epoxidation of various alkenes in low to high yields (29–100%) and good to excellent selectivities (75–100%) was performed with tetrabutylammonium monopersulfate in the presence of *meso*-tetrakis(pentafluorophenyl)porphyrin as catalyst and tetrabutylammonium acetate or fluoride or imidazole as co-catalysts in CH₂Cl₂, in less than 10 min at room temperature (~25 °C).

© 2006 Elsevier Ltd. All rights reserved.

Biomimetic epoxidation of alkenes has been achieved using various synthetic manganese(III) porphyrins in association with oxidants, such as PhIO,¹ NaOCl,² H_2O_2 ,³ periodate,⁴ and *n*-Bu₄NHSO₅.⁵ It was found that the rates and selectivities of these reactions are critically dependent upon the use of nitrogen donor co-catalysts.^{3a,6} Also, it has been demonstrated that, instead of nitrogen donors, ammonium acetate can be employed as an effective co-catalyst.⁷ Contrary to the oxidative degradation of the nitrogen donors,⁸ salt co-catalysts are quite stable under these oxidizing conditions.⁹

In this work we describe for the first time the epoxidation of alkenes in low to high yields and good to excellent selectivities, in very short times using n-Bu₄NHSO₅¹⁰ in the presence of MnTPFPP(OAc)¹¹ catalyst in association with either n-Bu₄NOAc¹² and n-Bu₄NF or imidazole co-catalysts, Tables 1 and 2. The results obtained clearly show how the relative reactivities of the aryl alkenes versus cyclooctene, cyclohexene, and 1-octene differ substantially in accord with the nature of the co-catalysts, under similar conditions, Table 2. The general procedure for oxidation consisted of adding n-Bu₄NHSO₅ (0.19 mmol) to a CH₂Cl₂ (0.5 mL) solution containing the alkene (0.1 mmol), MnTPFPP(OAc) (0.001 mmol) and tetrabutylammonium salts¹² or imidazole (ImH) as co-catalysts (0.04 or 0.02 mmol). The solutions were stirred at a constant speed, under air, at room temperature. The consumption of the starting alkene and formation of epoxide were monitored by GLC and ¹H NMR.

The results of epoxidations of a series of alkenes in the presence of MnTPFPP(OAc) as catalyst and two different salt co-catalysts, n-Bu₄NOAc and n-Bu₄NF, are given in Table 1. Considering the reaction times, n-Bu₄-NOAc is clearly a more effective co-catalyst than n-Bu₄NF (entries 1–10). However, the selectivities were very similar.

To compare both the relative reactivities of alkenes and also the co-catalytic properties of n-Bu₄NOAc with ImH, we carried out similar epoxidation reactions with the same catalyst–co-catalyst–substrate–oxidant ratios (1:20:100:190), in CH₂Cl₂, for 1 min, Table 2. It was observed that the relative reactivities of alkenes were quite different for n-Bu₄NOAc and ImH co-catalysts, except for *trans*- β -methylstyrene. It was shown that the selectivities of epoxidation of alkenes were very similar except for α -methylstyrene and 3-Cl-styrene (entries 2 and 5), for which ImH was a more selective co-catalyst.

Keywords: Epoxidation; Tetrabutylammonium monopersulfate; Manganese porphyrin; Tetrabutylammonium salt; Co-catalyst.

^{*} Corresponding author. Tel.: +98 711 2284822; fax: +98 711 2280926; e-mail: dmohajer@chem.susc.ac.ir

^{0040-4039/\$ -} see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.07.119

Tahla 1	Enovidation of	alkenes with	n-Bu.NHSC	- catalyzed h	v MnTPFPP(($\Delta \alpha$ in the 1	presence of $n_{\rm -}R_{11}$	$NOAc$ or $n_{\rm B11}$	NE in CH ₂ Cl ₂ ^a
Table 1.	LPOMULATION OF	arkenes with	<i>n</i> -Du ₄ 11150	5 catalyzed 0	y will i i i i i ((JAC) III the	presence of n -Du	μ one of <i>n</i> -bu	$111 m cm_2 cm_2$

Entry	Alkene	Conversion ^b (%)	Epoxide	Epoxide yield ^b (%)	Selectivity ^b (%)	Time (min)
1		98 (91) ^c	°,	76 (72) ^c	78 (79) ^c	1 (2) ^c
2		90 (98) ^c	C C C	78 (86) ^c [70] ^e	87 (88) ^c	1 (7) ^c
3		98 (79) ^c	€ •	98 (79) ^c [83] ^e	100 (100) ^c	8 (10) ^c
4	CI	98 (97) ^c	CI	96 (88) ^c [89] ^e	98 (91) ^c	1 (3) ^c
5	CI	96 (98) ^c	CI CI	88 (85) ^c [80] ^e	92 (87) ^c	1 (5) ^c
6		98 (96 ^c)		92 (92) ^{c,d}	94 (96) ^c	1 (5°)
				6 (4) ^{c,d}	6 (4) ^c	
7		73 (50) ^c		73 (50) ^{c,d}	100 (100) ^c	10 (10) ^c
8		95 (97) [°]	⊂ ^o	93 (95) ^c	98 (98) ^c	2 (8) ^c
9	\bigcirc	93 (90) ^c	C ^o	91 (88) ^c [80] ^e	98 (98) ^c	5 (10) ^c
10	~~~⁄⁄	79 (29) ^c	\sim	77 (28) ^c	97 (97) ^c	10 (10) ^c

^a Reactions were run at least in triplicate under air at 25 ± 2 °C, and the reported values are the average of the measured values. The molar ratio for catalyst–co-catalyst–substrate–oxidant is 1:40:100:190.

^b The GC conversions (%) to the products and the epoxide yields (%) were measured relative to the starting alkenes. The conversion % is defined as [(the number of moles of the starting alkene converted to the product(s))/(the number of moles of the starting alkene)] × 100; epoxide yield % is equal to [(the number of moles of the epoxide obtained)/(the number of moles of the starting alkene)] × 100. The epoxide selectivity % is [(the number of moles of the epoxide formed)/(the number of moles of the starting alkene)] × 100.

^c The data outside the parentheses are for n-Bu₄NOAc and those in the parentheses correspond to n-Bu₄NF.

^d The organic product(s) and the unreacted alkenes were separated by silica gel chromatography and the isomer ratios were determined by ¹H NMR spectroscopy.

^e The isolated pure epoxides were obtained in the presence of *n*-Bu₄NOAc.¹³

Also, the epoxidation of *cis*-stilbene proceeded with a lower stereospecificity in the presence of *n*-Bu₄NOAc (93%) than ImH (100%). Alkenes with potential π -donor aryl substituents (entries 1–7), were generally much more reactive (conversion %, 27–98) than cyclohexene, cyclooctene, and 1-octene (conversion %, 17–52) (entries 8–10), in the presence of *n*-Bu₄NOAc. Whereas this order was virtually reversed when ImH co-catalyst was used, and the relatively less hindered cyclohexene, cyclooctene, and 1-octene displayed greater or similar

reactivities (conversion %, 49–62) as compared to the aryl alkenes (conversion %, 38–56). The less hindered monosubstituted styrene and 4-Cl-styrene were distinctly more reactive than disubstituted styrenes (entries 2, 3, 6, and 7), and 3-Cl-styrene, using *n*-Bu₄NOAc, Table 2.

The differing results obtained using n-Bu₄NOAc versus ImH clearly indicate that the active oxidizing species for these co-catalysts may be very different. Addition

Table 2. Epoxidation of arkenes with <i>n</i> -Bu ₄ N1150 ₅ catalyzed by MillTFTFT(OAC) in the presence of <i>n</i> -Bu ₄ NOAC of hill in Cl ₂ Cl ₂						
Entry	Alkene	Conversion ^b (%)	Epoxide yield ^b (%)	Selectivity (%)		
1	Styrene	98 (41) ^c	76 (33) ^c	78 (80) ^c		
2	α-Methylstyrene	88 (56) ^c	75 (56) ^c	85 (100) ^c		
3	<i>trans</i> -β-Methylstyrene	$52(50)^{c}$	$51 (50)^{\circ}$ trans	98 $(100)^{c}$		
4	4-Cl-Styrene	95 (46)°	92 (44)°	97 (96) ^c		
5	3-Cl-Styrene	$83(38)^{c}$	$77(37)^{\circ}$	93 (97) ^c		
6	cis-Stilbene	89 (40 [°])	83 $(40)^{c,d}$ cis	$93(100)^{c}$		
			6 (trace) ^{c,d} trans	7		
7	trans-Stilbene	$27(18)^{\circ}$	$27 (18)^{c,d}$ trans	$100(100)^{c}$		
8	Cyclooctene	$52(62)^{\circ}$	50 (62)°	96 $(100)^{\circ}$		
9	Cyclohexene	$20(52)^{\circ}$	$19(52)^{\circ}$	$95(100)^{\circ}$		
10	1-Octene	$17(49)^{\circ}$	$17(48)^{\circ}$	98 (98) ^c		

Table 2. Epoxidation of alkenes with n-Bu₄NHSO₅ catalyzed by MnTPFPP(OAc) in the presence of n-Bu₄NOAc or ImH in CH₂Cl₂^a

^a All the reaction conditions were the same as those described in Table 1 except for a different catalyst-co-catalyst ratio (1:20), and the reaction time (1 min).

^b The GC conversions (%) or epoxide yields (%) were measured relative to the starting alkenes.

^c The data outside of the parentheses refer to *n*-Bu₄NOAc co-catalyst and those inside the parentheses relate to ImH.

^d The organic product(s) and the unreacted alkenes were separated by silica gel chromatography and the isomer ratios were determined by ¹H NMR spectroscopy.

of ImH $(2.4 \times 10^{-4} \text{ mmol})$ and then *n*-Bu₄NHSO₅ $(2.3 \times 10^{-3} \text{ mmol})$ to a solution of MnTPFPP(OAc) $(1.2 \times 10^{-5} \text{ mmol})$ in CH₂Cl₂ (2 mL) (Soret, $\lambda_{max} =$ 474 nm) had virtually no effect on the Soret band position. In contrast, addition of *n*-Bu₄NOAc (2.4×10^{-4}) mmol) to a CH_2Cl_2 solution of MnTPFPP(OAc) (1.2 × 10⁻⁵ mmol) very rapidly (<15 s) produced a new intense Soret band ($\lambda_{max} = 466$ nm), presumably due to the formation of a six-coordinate [MnTPFPP- $(OAc)_2$]-species. By adding *n*-Bu₄NHSO₅ (2.3×10⁻³) mmol) to this solution, the Soret band at $\lambda_{max} = 466$ nm gradually disappeared (500 s), and concomitantly a Soret band at $\lambda_{\text{max}} = 418$ nm, probably corresponding to an Mn-oxo species,¹⁴ increased to a maximum. Addition of a large excess of alkene again gave the original Soret band ($\lambda_{max} = 466$ nm). Accordingly, it seems plausible to conclude that for n-Bu₄NOAc co-catalyst, an MnTPFPP(OAc)(O) species is the primary active oxidant, whereas in the case of ImH the functional oxidant is predominantly the six-coordinate MnTPFPP(ImH)-(HSO₅) complex. Consideration of the steric properties of the alkenes (see above) suggests that steric hindrance operating at the oxygenation site of MnTPFPP-(OAc)(O) must be greater than that of MnTPFPP(ImH)-(HSO₅). It seems that the strong withdrawal of the Mn-oxo group, with its short bond length, into the cavity of the *meso*-tetrakis(pentafluorophenyl) groups of the porphyrin, by the trans OAc⁻ axial ligand, might be the main cause of the observed larger steric hindrance of the former than the latter.¹⁴

Examination of the co-catalytic properties of a variety of *n*-tetrabutylammonium salts,¹² in the epoxidation of α -methylstyrene demonstrates that the acetate and fluoride salts are the best co-catalysts, considering a combination of both conversion % and selectivity %, Table 3. However, *n*-Bu₄NSCN appears to be an excellent co-catalyst, in terms of selectivity of the epoxidation.

Comparison of catalytic activities of four different MnPor(OAc) species, for epoxidation of styrene in the presence of both *n*-Bu₄NOAc and *n*-Bu₄NF co-catalysts,

Table 3. Epoxidation of α -methylstyrene with *n*-Bu₄NHSO₅ catalyzed by MnTPFPP(OAc) in the presence of various tetrabutylammonium salts in CH₂Cl₂^a

Salt	Conversion ^b (%)	Epoxide yield ^b (%)	Selectivity (%)	Time (min)
<i>n</i> -Bu ₄ NOAc	88	74	84	1
n-Bu ₄ NF	67	58	86	10
n-Bu ₄ NCl	62	42	68	10
<i>n</i> -Bu ₄ NBr	79	28	35	10
<i>n</i> -Bu ₄ NN ₃	61	41	67	10
n-Bu ₄ NOCN	58	33	57	10
n-Bu ₄ NSCN	31	28	90	10
$(n-Bu_4N)_2SO_4$	64	44	69	10
n-Bu ₄ NHSO ₄	9	5	55	10
n-Bu ₄ NNO ₃	3	1	33	10
None	_	_	_	10

^a Reactions were run at least in triplicate under air at 25 ± 2 °C, and the reported data represent the average values. The molar ratio for catalyst–co-catalyst–substrate–oxidant is 1:20:100:190.

^b The GC conversions (%) and epoxide yields (%) were measured relative to the starting alkene.

under similar conditions, shows that MnTPFPP(OAc) is the best catalyst among this series, Table 4. The lower catalytic properties of MnTMP(OAc)¹¹ and MnTD-CPP(OAc)¹¹ in comparison to MnTPFPP(OAc) can be related to their larger steric hindrance. Whereas, the lower catalytic activity of MnTPP(OAc)¹¹ than MnTP-FPP(OAc) reflects the lower stability of the former than the latter toward oxidative degradation. This contrasts the behavior of MnTPP(OAc) as an oxidation catalyst in the presence of ImH co-catalyst.^{5d} It should be noted that with molar ratios of 20000:1:2500:36000 for styrene–MnTPFPP(OAc)–*n*-Bu₄NOAc–*n*-Bu₄NHSO₅ a total turnover number of 13,000 was achieved for epoxidation of styrene, in CH₂Cl₂, in 72 h, at room temperature.

In conclusion, this work shows that epoxidation of alkenes in low to high yields and good to excellent selectivities can be performed with n-Bu₄NHSO₅ in the presence of MnTPFPP(OAc) catalyst in association with n-Bu₄-NOAc, n-Bu₄NF, or ImH co-catalysts, in CH₂Cl₂ at

Table 4. Catalytic activities of various MnPor(OAc) species for epoxidation of styrene in the presence of n-Bu₄NOAc and n-Bu₄NF salts^a

Salts	MnPor(OAc)				
	TPP	TMP	TDCPP	TPFPP	
<i>n</i> -Bu ₄ NOAc	19	5	10	98 ^b	
<i>n</i> -Bu ₄ NF	14	2	2	91°	

^a The molar ratios for catalyst-co-catalyst-substrate-oxidant and the general reaction conditions are the same as those for Table 1, with 10 min reaction times.

^b 1 min reaction time.

^c 2 min reaction time.

room temperature. The very high stability of *n*-tetrabutylammonium salt co-catalysts and moderate stability of MnTPFPP(OAc) catalyst toward oxidative degradation would seem to make these catalytic systems very suitable for achieving high turnover numbers for epoxidation of alkenes.

Acknowledgement

This work was supported by the Shiraz University Research Council.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet. 2006.07.119.

References and notes

- (a) Groves, J. T.; Nemo, T. E.; Myers, R. S. J. Am. Chem. Soc. 1979, 101, 1032–1033; (b) Gross, Z.; Mahammed, A. J. Mol. Catal. A: Chem. 1999, 142, 367–372.
- (a) Tabushi, I.; Korga, N. *Tetrahedron Lett.* **1979**, *20*, 3681–3684; (b) Meunier, B.; Guilmet, E.; De Carvalho, M.-E.; Poilblanc, R. J. Am. Chem. Soc. **1984**, *106*, 6668– 6676.
- (a) Renaud, J. P.; Battioni, P.; Bartoli, J. F.; Mansuy, D. J. Chem. Soc., Chem. Commun. 1985, 888–889; (b) Battioni, P.; Renaud, J. P.; Bartoli, J. F.; Mansuy, D. J. Chem. Soc., Chem. Commun. 1986, 341–343; (c) Mohajer, D.; Hosseini Monfared, H. J. Chem. Res. (S) 1998, 772– 773.
- 4. (a) Mohajer, D.; Karimipor, G.; Bagherzadeh, M. New J. Chem. 2004, 23, 740–747; (b) Takata, T.; Ando, W. Tetrahedron Lett. 1983, 24, 3631–3634; (c) Suslick, K. S.; Acholla, F. V.; Cook, B. R. J. Am. Chem. Soc. 1987, 109, 2818–2819; (d) Mohajer, D.; Bagherzadeh, M. J. Chem. Res. (S) 1998, 556–557; (e) Mohajer, D.; Tayebi, R.; Goudarziafshar, H. J. Chem. Res. (S) 1999, 168–169; (f) Mohajer, D.; Tangestaninejad, S. J. Chem. Soc., Chem. Commun. 1993, 240–241.
- (a) Robert, A.; Meunier, B. New J. Chem. 1988, 12, 885– 895; (b) De Porter, B.; Meunier, B. J. Chem. Soc., Perkin Trans. 2 1985, 1735–1740; (c) Commarota, L.; Campestrini, S.; Carrier, M.; Di Furia, F.; Ghiotti, P. J. Mol. Catal. A: Chem. 1999, 137, 155–160; (d) Mohajer, D.; Rezaeifard, A. Tetrahedron Lett. 2002, 43, 1881–1884.

- (a) Meunier, B. Inorg. Chem. 1988, 27, 161–164; (b) Mohajer, D.; Tangestaninejad, S. Tetrahedron Lett. 1994, 35, 945–948; (c) Baciocchi, E.; Boschi, T.; Galli, C.; Lapi, A.; Tagliatesta, P. Tetrahedron 1997, 53, 4497–4502; (d) Konishi, K.; Oda, K.; Nishida, K.; Aida, T.; Inoue, S. J. Am. Chem. Soc. 1992, 114, 1313–1318; (e) Guilment, E.; Meunier, B. Tetrahedron Lett. 1982, 23, 2449–2452; (f) Mansuy, D.; Battioni, P.; Renaud, J. P. J. Chem. Soc., Chem. Commun. 1985, 155–157.
- (a) Thellend, A.; Battioni, P.; Mansuy, D. J. Chem. Soc., Chem. Commun. 1994, 1035–1036; (b) Rebelo, S. L. H.; Simões, M. M. Q.; Neves, M. G. M. S.; Cavaleiro, J. A. S. J. Mol. Catal. A: Chem. 2003, 201, 9–22.
- (a) Ellis, P. E., Jr.; Lyons, J. E. J. Chem. Soc., Chem. Commun. 1989, 1315–1316; (b) Collman, J. P.; Chein, A. S.; Eberspacher, T. A.; Zhong, M.; Brauman, J. I. Inorg. Chem. 2000, 39, 4625–4629.
- Rocha Gansalves, A.-M. d'A.; Johnstone, R.-A. W.; Pereira, M.-M.; Shaw, J. J. Chem. Soc., Perkin Trans. 1 1991, 645–649.
- The synthesis of *n*-Bu₄NHSO₅ was based on the procedures given by: Compestrini, S.; Meunier, B. *Inorg. Chem.* 1992, 31, 1999–2006, and Ref. 5d. Freshly prepared *n*-Bu₄NHSO₅ was a much stronger oxidant than commercially available samples. Since the oxidizing ability of *n*-Bu₄NHSO₅ samples reduces with time, in order to obtain reproducible results, the *freshly* prepared oxidant was refrigerated and used within three days. *Caution: n*-Bu₄NHSO₅ should be considered as a potential explosive.
- 11. The free base porphyrins and MnPor(OAc) were synthesized by standard methods: $TPFPPH_2 = meso$ -tetrakis-(pentafluorophenyl)porphyrin (Lindsey, J. S.; Schreiman, I. C.; Hsu, H. C.; Marguerettaz, A. M. J. Org. Chem. **1987**, 52, 827–836); $\text{TPPH}_2 = meso\text{-tetraphenylporphyrin}$ (Adler, A. D.; Longo, F. R.; Finarelli, J. D.; Goldmacher, J.; Assour, J.; Korsakoff, L. J. Org. Chem. 1967, 32, 476); $TMPH_2 = meso-tetrakis(2,4,6-trimethylphenyl)porphyrin$ $TDCPPH_2 = meso-tetrakis(2,6-dichlorophenyl)por$ and phyrin (Hoffman, P.; Robert, A.; Meunier, B. Bull. Soc. Chim. Fr. 1992, 129, 85-97); MnTPFPP(OAc) (Kadish, K. M.; Araullo-McAdams, C.; Han, B. C.; Franzen, M. M. J. Am. Chem. Soc. 1990, 112, 8364-8368); MnTPP(OAc), MnTMP(OAc), and MnTDCPP(OAc) (Adler, A. D.; Longo, F. R.; Kampas, F.; Kim, J. J. Inorg. Nucl. Chem. 1970, 32, 2443-2445).
- 12. (a) *n*-Bu₄NOAc was prepared by adding tetrabutylammonium hydrogen sulfate (6.5 mmol) to a solution of sodium acetate (32.5 mmol) in water (40 mL). The mixture was stirred for 30 min and then extracted with CH_2Cl_2 (80 mL) and the extract dried over magnesium sulfate. After filtration and evaporation of the solvent, the remaining paste was washed with hexane (10 mL) and dried under vacuum. Other tetrabutylammonium salts were prepared by exchanging Br⁻ in *n*-Bu₄NBr with other anions by a similar procedure to the above. (b) *n*-Bu₄NF·3H₂O and *n*-Bu₄NBr were purchased from Fluka.
- 13. A mixture of the alkene (1 mmol), MnTPFPP(OAc) (0.01 mmol), *n*-Bu₄NOAc (0.4 mmol), and *n*-Bu₄NHSO₅ (1.9 mmol) in CH₂Cl₂ (5 mL), was stirred for 30 min, and then the majority of the solvent was removed, at room temperature. For the aryl alkenes the epoxides were separated using preparative TLC (silica gel 60, GF₂₅₄, Merck, on a 20 cm \times 20 cm plate) using *n*-hexane–ethyl acetate (7:1, v:v) as the mobile phase. For the separation of the cyclohexene oxide a silica gel column (silica gel 40, mesh 70–230, Fluka, in *n*-hexane), and *n*-hexane–ethyl acetate (7:1, v:v) eluent was used.
- Rebelo, S. H.; Pereira, M. M.; Simões, M. M. Q.; Neves, M. G. M. S.; Cavaleiro, J. A. S. J. Catal. 2005, 234, 76–87.